A group under MAcountable whose square is countably compact but whose cube is not

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization and axiomatization of all semigroups whose square is group

In this paper we give a characterization for all semigroups whose square is a group. Moreover, we axiomatize such semigroups and study some relations between the class of these semigroups and Grouplikes,introduced by the author. Also, we observe that this paper characterizes and axiomatizes a class of Homogroups (semigroups containing an ideal subgroup).  Finally, several equivalent conditions ...

متن کامل

characterization and axiomatization of all semigroups whose square is group

in this paper we give a characterization for all semigroups whose square is a group. moreover, we axiomatize such semigroups and study some relations between the class of these semigroups and grouplikes,introduced by the author. also, we observe that this paper characterizes and axiomatizes a class of homogroups (semigroups containing an ideal subgroup).  finally, several equivalent conditions ...

متن کامل

An Endomorphism Whose Square Is Bernoulli

One of the corollaries of Ornstein’s isomorphism theorem is that if (Y, S, ν) is an invertible measure preserving transformation and (Y, S, ν) is isomorphic to a Bernoulli shift then (Y, S, ν) is isomorphic to a Bernoulli shift. In this paper we show that noninvertible transformations do not share this property. We do this by exhibiting a uniformly 2-1 endomorphism (X, σ, μ) which is not isomor...

متن کامل

Sets Whose Difference Set Is Square-free

The purpose of this note is to give an exposition of the best-known bound on the density of sets whose difference set contains no squares which was first derived by Pintz, Steiger and Szemerédi in [PSS88]. We show how their method can be brought in line with the modern view of the energy increment strategy employed in problems such as Szemerédi’s Theorem on arithmetic progressions, and explore ...

متن کامل

Lucas Sequences Whose 12th or 9th Term Is a Square

The sequence {Un(1,−1)} is the familiar Fibonacci sequence, and it was proved by Cohn [12] in 1964 that the only perfect square greater than 1 in this sequence is U12 = 144. The question arises, for which parameters P , Q, can Un(P,Q) be a perfect square? This has been studied by several authors: see for example Cohn [13] [14] [15], Ljunggren [22], and Robbins [25]. Using Baker’s method on line...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 1999

ISSN: 0166-8641

DOI: 10.1016/s0166-8641(97)00206-x